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Abstract: Precise modeling of tropospheric delay and weighted mean temperature (Tm) is critical for
Global Navigation Satellite System (GNSS) positioning and meteorology. However, the model data
in previous models cover a limited time span, which limits the accuracy of these models. Besides,
the vertical variations of tropospheric delay and Tm are not perfectly modeled in previous studies,
which affects the performance of height corrections. In this study, we used the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis from 1979 to 2017 to build
a new empirical model. We first carefully modeled the lapse rates of tropospheric delay and Tm.
Then we considered the temporal variations by linear trends, annual, and semi-annual variations and
the spatial variations by grids. This new model can provide zenith hydrostatic delay (ZHD), zenith
wet delay (ZWD), and Tm worldwide with a spatial resolution of 1◦ × 1◦. We used the ECMWF
ERA-Interim data and the radiosonde data in 2018 to validate this new model in comparison with the
canonical GPT2w model. The results show that the new model has higher accuracies than the GPT2w
model in all parameters. Particularly, this new model largely improves the accuracy in estimating
ZHD and Tm at high-altitude (relative to the grid point height) regions.
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1. Introduction

When Global Navigation Satellite System (GNSS) signals travel through the neutral atmosphere,
they are bent and delayed due to atmospheric refractivity. The bending effect is usually neglected
because it is very small when the elevation angle is larger than 10◦ [1]. However, the time delay
induced excess ray path measurement can cause large errors in positioning results, which is referred
to as the tropospheric delay in the GNSS community. The tropospheric delay can be divided into
two components: a hydrostatic delay and a wet delay, and each component can be considered as the
product of the zenith delay and its corresponding mapping function [2–4]. The tropospheric delay is
an important error source in GNSS positioning, and accurate a priori tropospheric delay information,
especially the zenith hydrostatic delay (ZHD), can improve estimates of station coordinates and zenith
total delay [5]. Therefore, precise modeling of tropospheric delay is beneficial for GNSS positioning.
Besides, the tropospheric delay contains important information about the neutral atmosphere, which can
be used to remotely sense water vapor in the atmosphere. Literature study [3] derived the approximate
relationship between zenith wet delay (ZWD) and precipitable water vapor (PWV). It also introduced the
concept of weighted mean temperature (Tm), which is a crucial parameter in converting ZWD to PWV.
Hence, GNSS-based water vapor measuring largely depends on the precise calculation of Tm.

For the tropospheric delay modeling, scientists have built many models up to now. Traditional
tropospheric delay models [6,7] require meteorological observations from in situ sensors to calculate
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tropospheric delay. However, most GNSS stations are not equipped with meteorological sensors,
empirical models are therefore needed. The existing empirical models are roughly divided into two
types. The first type models meteorological parameters and uses traditional tropospheric delay models,
e.g., the Saastamoinen model or similar models, to calculate tropospheric delay [8–15]. The second type
models tropospheric delay directly, which provides empirical tropospheric delay free of meteorological
parameters [16–18].

For the calculation of Tm, the traditional method requires vertical profiles of temperature and water
vapor pressure. Such profiles are hard to acquire in reality, which greatly limits the development of GNSS
meteorology. Literature studies [19,20] found that Tm has a high correlation with surface temperature (Ts)
and proposed a linear relationship between them, which made the calculation of Tm easy. However, this
method largely depends on Ts. Literature study [21] constructed the empirical Global Weighted Mean
Temperature (GWMT) model, which contributed to the real-time calculation of PWV. Other Tm models
have also been established [22–28], which has accelerated the development of GNSS meteorology.

However, none of the above listed models considered long-term linear trends in tropospheric
delay and Tm modeling. Literature studies [29,30] reported that PWV have linear trends, suggesting
that tropospheric delay and Tm may also have linear trends. If these linear trends are not taken into
account while modeling, uncertainties will be introduced with time going on. Besides, previous
models used model data usually covering a time span shorter than a decade. This limited time span
is insufficient to simulate variations that are beyond the modeling period, and therefore lowers the
accuracy of the model. In addition, some climate phenomena, e.g., the El Niño-Southern Oscillation
(ENSO), can change the variation patterns [31], and if the time span is not long enough, the variation
due to ENSO will not be simulated. Moreover, the vertical variations in tropospheric delay and Tm have
not been perfectly modeled in previous studies, which limits the performance of height corrections.
If the height corrections are not properly accounted for, large uncertainties will be introduced in the
parameter estimates.

In this study, we used the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis from 1979 to 2017 to investigate the long-term variations in ZHD, ZWD, and
Tm. Besides, we used the ECMWF ERA-Interim pressure level data to carefully model the vertical
variations of ZHD, ZWD, and Tm to improve their height corrections. Finally, we used the same data
to build a new global empirical model, which incorporates tropospheric delay correction and Tm

calculation and can serve both GNSS positioning and meteorology.

2. Materials and Methods

2.1. European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim Reanalysis Data

ERA-Interim is an accurate global atmospheric reanalysis released by ECMWF. Compared with
previous ECMWF reanalysis, e.g., the ERA-40 reanalysis, the ERA-Interim reanalysis has better
quality by showing higher precision and higher spatiotemporal resolutions [32,33]. In this study, the
ERA-Interim monthly pressure, temperature, and water vapor pressure on 37 pressure levels were
used to calculate tropospheric parameters including ZHD, ZWD, and Tm. Since the Saastamoinen
model [6] can accurately estimate ZHD with mm-level accuracy using in situ pressure [34], this model
was used to compute ZHD with the ERA-Interim pressure data:

ZHD =
2.2768P

1− 0.00266 cos(2ϕ)−0.00028h
(1)

where P indicates the pressure (hPa), ϕ denotes the latitude (radian), and h is the height (km). ZWD
and Tm are calculated using the following equations [2,19]:

ZWD = 10−6
∫
∞

h
Nwdh (2)
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Nw = k′2
e
T
+ k3

e
T2 (3)

Tm =

∫
∞

h
e
T dh∫

∞

h
e

T2 dh
(4)

where Nw is the wet refractivity, e and T denote the water vapor pressure (hPa) and the temperature
(K), respectively, and k′2 and k3 are the atmospheric refractive index constants with the values of
22.97 K/hPa and 375, 463 K2/hPa [35]. Using Equations (1)–(4), we can obtain ZHD, ZWD, and Tm at
each pressure level.

The heights derived from the ECMWF ERA-Interim data are the geopotential heights, and we
converted them to the ellipsoid heights in WGS-84, which are usually used by GNSS users. The surface
height derived from the ECMWF was used as the height of each grid point. To obtain ZHD, ZWD, and
Tm at the height of the grid point, we performed an interpolation or an extrapolation by assuming that
these values vary linearly in the vertical direction within a short height range. Eventually, the ZHD,
ZWD, and Tm at all the pressure levels below 10 km and at the height of the grid point from 1979 to
2018 were computed. We calculated these values at all the grid points on a global scale with a spatial
resolution of 1◦ × 1◦, which were then used to establish a new model and to validate the new model.

2.2. Radiosonde Data

Radiosonde data are important meteorological observations to evaluate other observations and
model outputs. We obtained radiosonde data from the Integrated Global Radiosonde Archive (IGRA),
which has provided high-quality sounding observations from more than 1500 radiosondes and
sounding balloons distributed globally since the 1960s. The temporal interval of the radiosonde data
is 12 h with the data available at 00:00 and 12:00 UTC. The radiosonde data provide meteorological
profiles including pressure, temperature, relative humidity, etc., on certain pressure levels. We collected
all available radiosonde data in 2018. The radiosonde stations with a lot of missing data were discarded.
Eventually, we obtained in total 586 globally distributed radiosonde stations which are shown in
Figure 1. The ZHD, ZWD, and Tm were computed using the radiosonde profiles and the same method
as illustrated in Section 2.1. The height of the radiosonde data is also the geopotential height, which
was converted to the ellipsoid height. These data were used to validate our model.
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2.3. Linear Trends in Tropospheric Delay and Tm

We assumed that tropospheric delay and Tm have linear trends, which is in essence a first-order
approximation of the long-term atmospheric behavior. To investigate their linear trends, we first
selected four grid points at different latitudes and calculated their yearly ZHD, ZWD, and Tm from
1979 to 2017. We averaged the ECMWF ERA-Interim monthly data in each year to remove the seasonal
variations. The yearly values and their linear trends at these grid points are presented in Figure 2. The
linear trends in ZHD, ZWD, and Tm estimated at 95% confidence level are summarized in Table 1. We
also calculated the correlation coefficients and the p values from significance tests at these four grid
points, which are also shown in Table 1. It shows that 7 of 12 p values are smaller than 0.05, and we
thus inferred that ZHD, ZWD, and Tm time series at some grid points have linear trends.
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Figure 2. Yearly zenith hydrostatic delay (ZHD), zenith wet delay (ZWD), and weighted mean
temperature (Tm) from 1979 to 2017 and their linear trends at four grid points. (a–d): blue dots are
yearly ZHD and red lines are linear fit to them. (e–h): purple dots are yearly ZWD and red lines are
linear fit to them. (i–l): green dots are yearly Tm and red lines are linear fit to them.

Table 1. Linear trends in zenith hydrostatic delay (ZHD), zenith wet delay (ZWD), and weighted
mean temperature (Tm) estimated at 95% confidence level, correlation coefficients, and p values at four
grid points.

Longitude Latitude Tropospheric Parameter Linear Trend Correlation Coefficient p Value

115◦E 0◦N ZHD −0.03 ± 0.02 mm/year 0.15 0.01
115◦E 0◦N ZWD 0.70 ± 0.20 mm/year 0.52 2 × 10−7

115◦E 0◦N Tm −0.01 ± 0.01 K/year 0.08 0.08
115◦E 30◦N ZHD −0.03 ± 0.02 mm/year 0.25 1 × 10−3

115◦E 30◦N ZWD −0.05 ± 0.17 mm/year 0.01 0.51
115◦E 30◦N Tm 0.03 ± 0.01 K/year 0.49 7 × 10−7

115◦E 60◦N ZHD 0.01 ± 0.04 mm/year 0.01 0.60
115◦E 60◦N ZWD 0.08 ± 0.09 mm/year 0.08 0.06
115◦E 60◦N Tm 0.03 ± 0.02 K/year 0.23 2 × 10−3

115◦E 90◦N ZHD −0.08 ± 0.15 mm/year 0.03 0.28
115◦E 90◦N ZWD 0.14 ± 0.04 mm/year 0.49 6 × 10−7

115◦E 90◦N Tm 0.07 ± 0.02 K/year 0.57 2 × 10−8

We then calculated the linear trends, the corresponding uncertainties at the 95% confidence
level, the correlation coefficients, and the p values for the ZHD, ZWD, and Tm time series over the
globe. The global linear trends and the corresponding uncertainties are displayed in Figure 3, and
the correlation coefficients and the p values are provided in Figure S1 of the Supplementary Material
(SM). The statistics in Figure 3 show that the mean values of the global linear trends in ZHD, ZWD,
and Tm are −0.006 mm/year, 0.048 mm/year, and 0.014 K/year, respectively; and the median values are
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−0.007 mm/year, 0.031 mm/year, and 0.008 K/year, respectively. The median values are close to the
mean values, and we hence believe that the average values are convincing. The statistics in Figure S1
show that 16.9% (11,064 of 65,341), 44.1% (28,846 of 65,341), and 55.2% (36,073 of 65,341) of the grid
points have p values smaller than 0.05 for ZHD, ZWD, and Tm, respectively. This indicates that the
ZHD, ZWD, and Tm time series at the corresponding grid points exhibit linear variations. Therefore,
we modeled the linear trends of ZHD, ZWD, and Tm in our new model.
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2.4. Height Corrections for Tropospheric Delay and Tm

To determine the method for height correction of tropospheric delay, we proposed two possible
functions based on previous studies [8–11,36–38] and tested their accuracies. These two functions are
expressed as:

TD = TD0·e −α(h−h0) (5)

TD = TD0·[1− α(h− h0)]
5.225 (6)
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where TD indicates the tropospheric delay (ZHD or ZWD), TD0 is the tropospheric delay (m) at the
height of the grid point h0 (km), h is the target height (km), and α denotes the lapse rate (km−1) for
tropospheric delay.

To test the height correction performances of Equations (5) and (6), we used them to fit the
ECMWF-derived ZHD and ZWD profiles in June, 2017 at the same grid points selected in Section 2.3.
The fitting results are shown in Figures 4 and 5, respectively, and the root mean square (RMS) of the
fitting residuals are summarized in Table 2.
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Table 2. Root mean square (RMS) of the fitting residuals in ZHD and ZWD profiles with Equations (5)
and (6).

Fit Name
ZHD RMS (mm) ZWD RMS (mm)

0◦N
115◦E

30◦N
115◦E

60◦N
115◦E

90◦N
115◦E

0◦N
115◦E

30◦N
115◦E

60◦N
115◦E

90◦N
115◦E

Fit with
Equation (5) 17.1 15.3 19.3 15.6 9.7 10.0 14.0 2.8

Fit with
Equation (6) 1.6 3.6 0.7 3.6 6.2 5.4 1.2 1.5

Figure 4e–h shows that the ZHD fitting residuals from Equation (6) are overall smaller than those
from Equation (5) at these four grid points. Figure 5e–h shows that the ZWD fitting residuals from
Equation (6) are overall smaller than those from Equation (5) at the grid point 60◦N and 115◦E, and are
similar at the other three grid points. Table 2 shows that the RMS of the fitting residuals from Equation
(6) are all smaller than those from Equation (5). We also tested other grid points by fitting ZHD and
ZWD profiles with Equations (5) and (6). The results also show that the RMS of the fitting residuals
from Equation (6) are smaller than those from Equation (5). Therefore, we used Equation (6) in our
new model as the height correction method for tropospheric delay.
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As for Tm, we adopted the linear correction method that uses a linear lapse rate [24,26,28]:

Tm = Tm0 − β(h− h0) (7)

where Tm0 is the weighted mean temperature (K) at the height of the grid point h0 (km), and β denotes
the lapse rate (K/km) for Tm. This linear model for the height correction of Tm is justified by the almost
constant vertical lapse rate, which is a result of the adiabatic expansion of air with elevation.

We used the ECMWF-derived ZHD, ZWD, and Tm profiles to invert for the lapse rate for ZHD
(αZHD), the lapse rate for ZWD (αZWD), and the lapse rate for Tm (β) by a least square method. We
calculated the monthly values of these lapse rates from 1979 to 2017 and show two examples in Figure 6
to demonstrate that the lapse rates also have linear trends and seasonal variations. In Figure 6, we use
straight lines to show the linear trends and use 4-term Fourier series with annual and semi-annual
periods to describe the seasonal variations.
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Figure 6. Time series of lapse rate for ZHD (αZHD) (a–b), lapse rate for ZWD (αZWD ) (c–d), and lapse
rate for Tm (β ) (e–f) from 1979 to 2017 at two grid points. Red lines indicate the linear trends, and the
red curves are the 4-term Fourier series fitted to the αZHD, αZWD, and β.

Figure 6 shows that the Fourier series agree well with the αZHD, αZWD, and β, indicating the
seasonal variations in lapse rates, which is modeled in our new model. To justify the significance of the
linear trends in lapse rates, we performed significance tests and calculated the corresponding p values.
The p values of the linear trends in αZHD, αZWD, and β are 0.01, 8 × 10−3, and 5 × 10−4 at grid point
60◦N and 115◦E, and are 3 × 10−8, 9 × 10−8, and 3 × 10−7 at grid point 90◦N and 115◦E. All these p
values are smaller than 0.05, indicating that the lapse rates at these two grid points have linear trends.

Then, we calculated the linear trends, their uncertainties at the 95% confidence level, the correlation
coefficients, and the p values for the lapse rates at all the grid points, and present the results in Figures S2
and S3 of the SM. The statistics in Figure S3 show that 58.2% (38,058 of 65,341), 41.4% (27,076 of 65,341),
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and 48.4% (31,631 of 65,341) of the grid points have p values smaller than 0.05 for the lapse rates of
ZHD, ZWD, and Tm, indicating that the linear trends in lapse rates at the corresponding grid points
indeed exist.

2.5. Establishing a New Global Empirical Model

Previous studies have demonstrated that tropospheric delay and Tm have strong seasonal
variations [10,21], and our study verified the linear trends. Therefore, in our new model, the temporal
variations of ZHD, ZWD, and Tm are characterized by linear trends and seasonal variations (i.e., annual
and semi-annual variations). The vertical variations of ZHD and ZWD are described by Equation (6)
while the vertical variation of Tm is described by Equation (7). The temporal variations in their lapse
rates are also characterized by linear trends and seasonal variations. Based on these assumptions,
Equations (8) and (9) are proposed to model ZHD, ZWD, and Tm at a given point:

TD =
[
A1 + A2(Y − 1980) + A3 cos

(
DOY

365.25 2π
)
+ A4 sin

(
DOY

365.25 2π
)
+ A5 cos

(
DOY

365.25 4π
)
+ A6 sin

(
DOY

365.25 4π
)]
×{

1−
[
A7 + A8(Y − 1980) + A9 cos

(
DOY

365.25 2π
)
+ A10 sin

(
DOY

365.25 2π
)
+ A11 cos

(
DOY

365.25 4π
)
+ A12 sin

(
DOY

365.25 4π
)]
(h− h0)

}5.225 (8)

Tm =
[
B1 + B2(Y − 1980) + B3 cos

(
DOY

365.25 2π
)
+ B4 sin

(
DOY

365.25 2π
)
+ B5 cos

(
DOY

365.25 4π
)
+ B6 sin

(
DOY

365.25 4π
)]
−[

B7 + B8(Y − 1980) + B9 cos
(

DOY
365.25 2π

)
+ B10 sin

(
DOY

365.25 2π
)
+ B11 cos

(
DOY

365.25 4π
)
+ B12 sin

(
DOY

365.25 4π
)]
(h− h0)

(9)

where DOY denotes the day of year, Y represents the year, h0 is the height of the grid point (km), and h
is the target height (km), Ai and Bi (i = 1~12) are model coefficients to be determined.

The model coefficients are computed at 1◦ × 1◦ to account for spatial variations. When determining
the model coefficients at a given grid point, the Ai and Bi (i = 7~12) are first determined by fitting
the lapse rate time series from 1979 to 2017 for ZHD, ZWD, and Tm, respectively, by a least square
method. Then the Ai and Bi (i = 1~6) are inverted with the computed ZHD, ZWD, and Tm at the
height of the grid point. The model coefficients are solved at all grid points over the globe. We display
these coefficients in Figures S4–S9 of the SM by showing the global linear trends, mean values, annual
amplitudes, and semi-annual amplitudes of ZHD, ZWD, Tm, and their lapse rates. This new model is
named as GTrop (Global Tropospheric Model).

When using this new model, only latitude, longitude, ellipsoid height, and a specific time (year
and day of the year) are required. The model first finds the four grid points that are closest to the
given location. The required parameters at these four points at the given height are then calculated
through Equations (8) and (9). Finally, a bilinear interpolation is employed to interpolate the required
parameters at the given location.

3. Results

3.1. Fitting Results of the Model

Figure 7 shows the RMS of the fitting residuals for ZHD, ZWD, Tm, and their lapse rates on
a global scale. The mean values of the RMS for ZHD, ZHD lapse rate, ZWD, ZWD lapse rate, Tm,
and Tm lapse rate are 7.1 mm, 1.1 × 10−4 km−1, 11.6 mm, 4.2 × 10−3 km−1, 1.3 K, and 0.26 K/km,
respectively; the median values are 7.0 mm, 1.0 × 10−4 km−1, 10.0 mm, 3.8 × 10−3 km−1, 1.2 K, and
0.25 K/km, respectively. The mean values are close to the median values. Outliers can distort mean
values while median values are insensitive to blunders, and we hence believe that there should be no
large uncertainties in the fitting results.
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lapse rate (d), Tm (e), and Tm lapse rate (f).

The RMS of ZHD, ZWD, Tm, and their lapse rates are overall very small but show different
geographical characteristics. Figure 7a shows that the RMS of ZHD are larger in high-latitude regions
than in low-latitude regions. This is because that the seasonal variations of ZHD are larger in high
latitudes, which is shown in Figure S4c,d of the SM. Larger seasonal variations bring more difficulties
in modeling ZHD, and thus lead to larger RMS. Figure 7b shows that the RMS of ZHD lapse rate
are larger in high-latitude regions than in low-latitude regions. This is caused by the larger seasonal
variations of ZHD lapse rate in high latitudes, which is evident in Figure S5c,d of the SM.

Figure 7c shows that the RMS of ZWD in the low-latitude regions are larger than those in
the high-latitude regions. This should be due to that the low-latitude regions are wetter than the
high-latitude regions, which is evident by Figure S6b of the SM. The water vapor in low latitudes is
abundant and highly changeable, which causes larger RMS there. Figure 7d shows that the RMS of
ZWD lapse rate are larger in the low-latitude regions than in the high-latitude regions. This is due to
that the magnitudes of the ZWD lapse rate are larger in low latitudes than in high latitudes, which can
be observed from Figure S7b of the SM.
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Figure 7e shows that the RMS of Tm are larger in high-latitude regions than in low-latitude regions.
This is because that the seasonal variations of Tm are larger in high latitudes (see Figure S8c,d of the
SM), which brings more difficulties in modeling Tm and thus lead to larger RMS. Figure 7f shows that
the RMS of Tm lapse rate in high-latitude regions are larger than those in low-latitude regions. Figure
S9c,d of the SM shows that the seasonal variations of Tm lapse rate are larger in high latitudes, which
cause larger RMS there.

3.2. Validate the Model by European Centre for Medium-Range Weather Forecasts (ECMWF) Data

A new data set of ECMWF ERA-Interim monthly 1◦ × 1◦ data in 2018 is employed to validate
the GTrop model. The canonical GPT2w model [11] is employed for comparison. In actual cases, the
GNSS stations may be located below or above the nearby grid points, therefore vertical interpolation
and extrapolation are required when using these two models. To test the model performance in severe
height correction cases, we use the ECMWF data available at −3 km to 3 km height relative to the
earth surface to do this validation. It should be noted that the ECMWF data are provided according to
pressure levels from 1000 hPa to 1 hPa. At high-altitude regions, 1000 hPa corresponds to an ellipsoid
height that is much lower than the earth surface, that’s why we can obtain data at -3 km height. We
calculate ZHD, ZWD, Tm at all available pressure levels whose ellipsoid heights are at −3 km to 3 km
relative to the earth surface by the two models and by the method represented by Equations (1)–(4).
The latter results are treated as the reference values. Global biases of ZHD, ZWD, and Tm from the two
models are presented in Figure 8, global RMS are presented in Figure 9, and the detailed statistical
results are shown in Table 3.
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Figure 8. Global biases of the ZHD (a–b), ZWD (c–d), and Tm (e–f) for the GPT2w and GTrop models
validated by ECMWF ERA-Interim monthly 1◦ × 1◦ data in 2018. The positive bias means the model
output are larger than the reference values, while the negative bias means they are smaller than the
reference values.
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Table 3. Validation results of GPT2w and GTrop models tested by ECMWF ERA-Interim data and
radiosonde data in 2018.

Validation Data Model
ZHD ZWD Tm

Bias (mm) RMS
(mm) Bias (mm) RMS

(mm) Bias (K) RMS (K)

ECMWF Data
GPT2w 5.8

[−4.0, 29.3]
10.8

[1.7, 43.2]
0.4

[−32.2, 90.3]
10.5

[1.3, 151.2]
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[−6.9, 8.3]
7.0

[3.7, 11.1]

GTrop 1.0
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6.5
[0.8, 16.3]
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9.6
[0.4, 41.9]
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Radiosonde Data
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Figure 8a shows that the GPT2w model mainly shows positive ZHD bias and has large positive
bias in Antarctic and Greenland. According to Table 3, the averaged ZHD bias from the GPT2w model
is 5.8 mm. Figure 8b shows that the GTrop model has small ZHD bias globally with a mean value
of only 1.0 mm. This indicates that the GTrop model shows better bias than the GPT2w model in
estimating ZHD, especially in Antarctic and Greenland. Figure 8e, f shows that the GPT2w model has
obvious positive Tm bias with a mean value of 4.8 K, while the GTrop model has small Tm bias in most
regions with a mean value of −0.1 K, indicating that the GTrop model has better bias than the GPT2w
model in estimating Tm.

According to other studies [11,12,27], the biases in ZHD and Tm from the GPT2w model are near
zero at the earth surface. However, in our study, we evaluate the model accuracy not only at the earth
surface but also in the range of −3 km to 3 km height. The GPT2w model shows large bias in our
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validation, while the bias of the GTrop model is still small. This demonstrates that the GPT2w model
can introduce large uncertainties to the tropospheric delay and Tm estimates when height difference
between the reference height and the target height is large due to its insufficient height corrections,
while the GTrop model can well handle this problem.

Figure 9a,b shows that the GPT2w model has larger ZHD RMS than the GTrop model in Antarctic,
indicating that the GTrop model has higher accuracy than the GPT2w model in estimating ZHD in this
region. Figure 9e,f shows that the GPT2w model has larger Tm RMS than the GTrop model over the
globe, indicating that the GTrop model shows higher accuracy than the GPT2w model in estimating
Tm globally.

3.3. Validation of the Model by Radiosonde Data

ZHD, ZWD, and Tm profiles derived from radiosonde measurements at globally distributed 586
stations in 2018 were used to validate the GPT2w and GTrop models. We also validate the model
performance from the station height to 3 km height above it. Bias and RMS of ZHD, ZWD, and Tm at
each station were computed and are presented in Figures 10 and 11, respectively. Detailed statistical
results are shown in Table 3.
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Figure 10. Biases of the ZHD (a–b), ZWD (c–d), and Tm (e–f) for the GPT2w and GTrop models
validated by radiosonde data in 2018. The positive bias means the model output are larger than the
reference values, while the negative bias means they are smaller than the reference values.
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Figure 10a shows that the GPT2w model has positive ZHD bias at most stations, and Table 3
shows that the averaged ZHD bias for the GPT2w model is 2.0 mm. This should be due to the low
precision of the height correction for ZHD in the GPT2w model. Figure 10b shows that the ZHD biases
from the GTrop model are better than those from the GPT2w model, and the averaged ZHD bias from
the GTrop model is −0.9 mm. Figure 10e shows that the GPT2w model has positive Tm bias at most
stations, and the mean value is 5.5 K. This is because the GPT2w model neglects the height correction
for Tm. Figure 10f shows that the GTrop model has small Tm bias at most stations with a mean value of
0.2 K. This further demonstrates that the ZHD and Tm biases from the GTrop model are better than
those from the GPT2w model.

Figure 11a–d shows that the RMS of ZHD and ZWD from the GPT2w and GTrop models are
comparative and show latitudinal gradients, i.e., larger at high latitudes than at low latitudes for ZHD
RMS and larger at low latitudes than at high latitudes for ZWD RMS. Figure 11e, f shows that the
GPT2w model has larger Tm RMS than the GTrop model, which is consistent with the results shown in
Figure 9. This further demonstrates that the GTrop model retains higher accuracy than the GPT2w
model in estimating Tm.

Table 3 shows that the RMS from the GTrop model are overall smaller than those from the GPT2w
model in all parameters. When validated by the ECMWF ERA-Interim data, the ZHD, ZWD, and Tm

improvements are 39.8%, 8.6%, and 78.6%, respectively. When validated by the radiosonde data, these
improvements become 9.0%, 1.2%, and 53.5%. We attribute these improvements to the modeling of
linear trends and the advancement of height corrections in our new model.

3.4. Latitudinal Variations of the Model Accuracy

To investigate the latitudinal variations of the model accuracy, we first divided the whole globe
into eight bands along the latitudinal direction (20◦ sampling interval). The biases and RMS of ZHD,
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ZWD, and Tm from the GPT2w and GTrop models validated by the radiosonde data in 2018 were then
computed and averaged within each latitudinal band. The statistical results are presented in Figure 12.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 21 
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different latitude bands validated by radiosonde data in 2018.

Figure 12a shows that the ZHD from the GPT2w model mainly have positive biases, while ZHD
biases from the GTrop model are small. The ZHD RMS from the two models are both smaller at
low-latitude bands and larger at high-latitude bands. This result is consistent with those shown in
Figure 11a, b, which is mainly due to the fact that the seasonal variations of ZHD are larger at high
latitudes than at low latitudes. The ZHD RMS from the GTrop model are smaller than those from the
GPT2w model at all latitude bands. The improvements are larger at low latitudes. This indicates that
the GTrop model improves the accuracy in estimating ZHD compared to the GPT2w model, especially
in the low-latitude regions.

Figure 12b shows that the ZWD RMS from the GPT2w model and the GTrop model are both larger
at low-latitude bands and smaller at high-latitude bands. This result is consistent with those shown in
Figure 11c,d. This could be due to the fact that the low latitudes are wetter with highly dynamic water
vapor than in the high latitudes. The ZWD RMS from the two models are comparable, indicating that
these two models have similar accuracies in estimating ZWD over the globe.

Figure 12c shows that the GPT2w model has large positive Tm bias in all bands. This is because
the GPT2w model neglects the height correction for Tm. However, the GTrop model has small and
stable Tm bias. This could be due to the fact that the GTrop model considers the height correction for
Tm and carefully models the Tm lapse rate by characterizing the temporal variation by linear trend,
annual, and semi-annual variations. Therefore, the Tm RMS from the GTrop model are far smaller than
those from the GPT2w model. This indicates that the GTrop model largely improves the accuracy in
estimating Tm than the GPT2w model. It should be noted that the Tm RMS from the two models are
larger at mid-latitudes than those at low- and high-latitudes.
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3.5. Seasonal Variations of the Model Accuracy

To investigate the seasonal variations of the model accuracy, we calculated biases and RMS of
ZHD, ZWD, and Tm from the GPT2w and GTrop models validated by the radiosonde data in 2018
in four seasons and present them in Figure 13. We calculated the biases and RMS for both the North
Hemisphere (NH) and the South Hemisphere (SH) due to that the seasonal variations in these two
hemispheres being different.
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Figure 13a shows that in the NH, the ZHD RMS from the GPT2w and GTrop models are both
larger in winter than in summer. This is because in the NH, the seasonal amplitudes of ZHD are larger
in winter than in summer. The larger amplitudes bring more difficulties in modeling ZHD and result
in larger RMS. Figure 13b shows that in the SH, the ZHD RMS from these two models are larger in
summer than in winter. This is because the seasonal amplitudes of ZHD are larger in summer than
in winter in the SH. The GTrop model has smaller ZHD RMS than the GPT2w model in all the four
seasons and in both hemispheres. This indicates that the ZHD from the GTrop model have higher
accuracy than those from the GPT2w model in the whole year and on a global scale.

Figure 13c shows that the two models both have larger ZWD RMS in summer than in winter in
the NH, while Figure 13d shows that they have larger ZWD RMS in winter than in summer in the SH.
This could be due to the fact that compared with summer, the winter is drier in the NH and wetter in
the SH. The drier season leads to smaller variations in ZWD, which is beneficial for obtaining smaller
RMS. The ZWD RMS from the two models are comparative, indicating that the GTrop model and the
GPT2w model have the similar accuracy in estimating ZWD.

Figure 13e shows that the Tm RMS from the two models are larger in winter than in summer in
the NH, while Figure 13f shows that the Tm RMS are larger in summer than in winter in the SH. This is
because the seasonal amplitudes of Tm are larger in winter than in summer in the NH and larger in
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summer than in winter in the SH. The Tm RMS from the GPT2w model are larger than those from
the GTrop model. This is because the GPT2w model has large positive Tm bias in all the four seasons,
while those from the GTrop model are small. We attribute this to the fact that the GTrop model well
models the lapse rate of Tm while the GPT2w model neglects it.

3.6. Vertical Variations of the Model Accuracy

To investigate the vertical variations of the model accuracy, we divided the height from 0 km to 10
km into ten layers (1 km sampling interval). Then we calculated biases and RMS of ZHD, ZWD, and
Tm from the GPT2w and GTrop models validated by the radiosonde data in 2018 at different height
layers and present them in Figure 14.
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different heights validated by radiosonde data in 2018.

Figure 14a shows that the GPT2w model shows very large positive ZHD bias at high heights,
while the ZHD biases from the GTrop model are still small at these heights. The ZHD RMS from the
GPT2w model increases with increasing height and reaches ~80 mm at 10 km height, while ZHD RMS
from the GTrop model stays at a low level at all heights and is only ~10 mm at 10 km height. This
indicates that the GPT2w model has large uncertainties in estimating ZHD at high-altitude (relative to
the reference height) regions, while the accuracies of the GTrop model stay at a high level at all heights.

Figure 14b shows that the ZWD biases from the two models are small at all heights. The ZWD
RMS from them both decrease with increasing height. This is because the higher altitude is drier than
the lower altitude. The drier atmosphere results in smaller variations in ZWD, which is beneficial for
obtaining smaller RMS. The ZWD RMS from the two models are comparative, demonstrating that
these two models have similar accuracies in estimating ZWD.

Figure 14c shows that the GPT2w model has large positive bias in estimating Tm at high altitudes.
The Tm RMS from the GPT2w model increase with increasing height. The maximum RMS is ~50 K and
occurred at 10 km height. However, the GTrop model has small and stable Tm RMS at all heights, and
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the RMS is ~4 K at 10 km. We attribute this to the fact that the GPT2w model does not take the height
correction for Tm into account while the GTrop model well considers the height correction.

4. Discussion

The validation by the radiosonde data is limited by the fact that radiosonde stations are not
evenly distributed on the earth, i.e., most on land, a few on islands, more in the Northern Hemisphere
than in the Southern Hemisphere. To compensate for this, we used the ECMWF ERA-Interim data
in 2018 to validate the two models. The ECMWF ERA-Interim data are evenly distributed in the
globe with a spatial resolution of 1◦ × 1◦. In addition, we employed radiosonde data collected from
586 stations in 2018 to validate these two models. Some of the radiosonde stations are located in the
South Hemisphere (see Figure 1). Therefore, the validation results should be valid around the globe.
The validation results indicate that our new model GTrop outperforms the canonical GPT2w model.
The performance improvements are mainly attributed to two improved parts in the GTrop model.

The first improved part is that the GTrop model employs model data covering a period as long as
~40 years. This long time span guarantees that the linear trends can be detected and modeled. The
linear trend is a first-order approximation of the complex atmospheric variations. For tropospheric
parameters, their seasonal variations are much stronger than the linear trends, and thus only modeling
seasonal variations can account for most of the temporal variations. However, according to our studies,
we find that the ZHD, ZWD, Tm, and their lapse rates indeed have linear trends in some regions, which
has passed the significance tests. Therefore, we assume that the model performance can be further
improved by considering the linear trends in modeling. To investigate how much improvement can be
achieved with this new consideration, we calculated the improvements of the fitting results compared
with the results without considering linear trends and present them in Figure S10 of the SM. It shows
that the improvements can reach 10%–30% in some regions (these regions are typically the regions
with strong linear correlation, which can be observed from Figures S1a,c,e and S3a,c,e of the SM).

The second improved part is the height correction of the GTrop model. Previous studies usually
address model accuracies at or near the reference heights without spending more efforts on height
corrections. Since the GNSS stations are usually not located at or near the reference heights, proper
height corrections are therefore required. The GTrop model carefully models the vertical variations of
tropospheric delay and Tm by modeling their lapse rates, and consequently advances the performance
of height correction.

The GTrop model demonstrates to be superior to the GPT2w model. This superiority in model
accuracy can be theoretically propagated to the PWV estimates. Literature study [39] gives the
mathematical relationship between the uncertainties of Tm and ZWD and the uncertainties of PWV.
It shows that the PWV uncertainties rely on the uncertainties of Tm and ZWD. In addition, the
positioning accuracies can also benefit from the improved ZHD accuracies [5]. The applications in
GNSS meteorology and positioning with the GTrop model will be left for a future study.

5. Conclusions

In this study, we used ECMWF ERA-Interim data from 1979 to 2017 to investigate the temporal
variations of ZHD, ZWD, and Tm and demonstrated that they all have linear trends besides the
seasonal variations. Then, we tested the accuracies of two possible functions for the height corrections
of tropospheric delay, and determined the optimal one. Based on these findings, we built a new
model that considers the linear trends and seasonal variations in ZHD, ZWD, Tm, and their lapse rates.
This new model can provide ZHD, ZWD, and Tm worldwide with the spatial resolution of 1◦ × 1◦.
Validation results demonstrate that this new model shows higher accuracy than the canonical GPT2w
model in all parameters. The improvements are 39.8%, 8.6%, and 78.6% for ZHD, ZWD, and Tm in
terms of RMS when validated by the ECMWF ERA- Interim data in 2018, and are 9.0%, 1.2%, and
53.5% when validated by the radiosonde data in 2018. This model especially improves the accuracies
in ZHD and Tm at high-altitude (relative to the grid point height) regions. This new model integrates



Remote Sens. 2019, 11, 1893 19 of 21

tropospheric delay correction and Tm calculation and thus contributes to GNSS-based real-time PWV
retrieval and also benefits GNSS positioning. The MATLAB source code of this new model is available
at https://github.com/sun1753814280/GTrop.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/16/1893/s1,
Figure S1. Global correlation coefficients and p values from significance tests of ZHD, ZWD, and Tm derived
from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data from 1979 to 2017.
Figure S2. Global linear trends and corresponding uncertainties at the 95% confidence level of lapse rates of
ZHD, ZWD, and Tm derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim data from 1979 to 2017. Figure S3. Global correlation coefficients and p values from significance tests
of lapse rates of ZHD, ZWD, and Tm derived from the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim data from 1979 to 2017. Figure S4. Global linear trends, mean values, annual amplitudes,
and semi-annual amplitudes of ZHD. Figure S5. Global linear trends, mean values, annual amplitudes, and
semi-annual amplitudes of ZHD lapse rate. Figure S6. Global linear trends, mean values, annual amplitudes,
and semi-annual amplitudes of ZWD. Figure S7. Global linear trends, mean values, annual amplitudes, and
semi-annual amplitudes of ZWD lapse rate. Figure S8. Global linear trends, mean values, annual amplitudes, and
semi-annual amplitudes of Tm. Figure S9. Global linear trends, mean values, annual amplitudes, and semi-annual
amplitudes of Tm lapse rate. Figure S10. Improvements of fitting results compared with the model without
considering linear trends.
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